

Me₃SiCl-Promoted Three-Component Coupling Reaction of a Functionalized Enamine, an Acetal, and an Alkyne: An Unprecedented Approach to the Synthesis of Tetrasubstituted Pyridines via a [3 + 2 + 1] Intermolecular Cyclization

Toshiaki Sasada, Norio Sakai, and Takeo Konakahara*

Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan

konaka@rs.noda.tus.ac.jp

Received May 21, 2008

We have identified a Me₃SiCl-mediated three-component coupling reaction of a functionalized enamine, N,N-dimethylformamide diethyl acetal, and an internal alkyne having an electron-withdrawing group that produces 2,3,4,5-tetrasubstituted pyridine derivatives in good to excellent yields via a single-step reaction.

The pyridine ring system is one of the most important core structures and is widely found in naturally occurring compounds, biologically active substances, and clinical drugs.¹ A number of synthetic approaches have therefore been developed for the facile synthesis of these central skeletons.^{1–3} Generally, previous synthetic routes to the pyridine framework have involved the dehydrated condensation of aldehydes, ketones, and α,β unsaturated carbonyl compounds with ammonia and its amine derivatives⁴ or aza-Diels-Alder reactions of a 1- or 2-azadiene derivative with a dienophile, such as an alkene and an alkyne.⁵ In addition, [2 + 2 + 2] cycloaddition reactions of two types of alkynes with a nitrile have been identified.⁶ However, most of these procedures have had restricted use due to complicated protocols. Moreover, these methods often require a high temperature, a prolonged reaction time, and expensive additives, such as transition metal complexes, resulting in a decline in the product yield. Hence, the development of a novel procedure for a simple, practical, single-step synthesis of a pyridine framework is highly desirable. We previously found that intermolecular cyclization of a multifunctionalized 1-azaallylic anion⁷ with several Michael acceptors successfully led to the synthesis of nitrogen-containing heterocycles, such as polysubstituted pyridines,⁸ pyrroles,⁹ and pyrimidines.¹⁰ We also showed that a Lewis acid catalyzed cyclization of a functionalized enamine,¹¹ which is formally equivalent to a 1-azaallyl anion with cyclic Michael acceptors, produced fused heterocycles.¹²

During ongoing exploration of a novel synthetic process of nitrogen-containing heterocyclic compounds, we found a new, practical Me₃SiCl-promoted three-component coupling reaction of a polyfunctionalized enamine, N,N-dimethylformamide diethyl acetal (DMF-DEA), and an internal alkyne having an electron-withdrawing group, leading to the production of

(4) For selected reviews, see: (a) Bagley, M. C.; Glover, C.; Merritt, E. A. *Synlett* **2007**, 2459. (b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. *Chem. Rev.* **2003**, *103*, 893.

(5) For selected reviews, see: (a) van der Plas, H. C. ARKIVOC 2008, 127.
(b) Jayakumar, S.; Ishar, M. P. S.; Mahajan, M. P. Tetrahedron 2002, 58, 379.
(c) Buonora, P.; Olsen, J. C.; Oh, T. Tetrahedron 2001, 57, 6099. (d) Boger,
D. L. Chem. Rev. 1986, 86, 781. (e) Weinreb, S. M.; Staib, R. R. Tetrahedron 1982, 38, 3087.

(6) For selected reviews, see: (a) Heller, B.; Hapke, M. Chem. Soc. Rev. **2007**, *36*, 1085. (b) Chopade, P. R.; Louie, J. Adv. Synth. Catal. **2006**, *348*, 2307. (c) Varela, J. A.; Saá, C. Chem. Rev. **2003**, *103*, 3787. (d) Maryanoff, B. E.; Zhang, H.-C. ARKIVOC **2007**, 7. (e) Bönnemann, H. Angew. Chem., Int. Ed. Engl. **1985**, *24*, 248. (f) Bönnemann, H. Angew. Chem., Int. Ed. Engl. **1978**, *17*, 505.

(7) (a) Mangelinckx, S.; Giubellina, N.; De Kimpe, N. Chem. Rev. 2004, 104, 2353. (b) Konakahara, T.; Sato, K. Bull. Chem. Soc. Jpn. 1983, 56, 1241.

(8) (a) Suzuki, H.; Sakai, N.; Iwahara, R.; Fujiwaka, T.; Satoh, M.; Kakehi, A.; Konakahara, T. J. Org. Chem. 2007, 72, 5878. (b) Konakahara, T.; Sugama, N.; Yamada, A.; Kakehi, A.; Sakai, N. Heterocycles 2001, 55, 313. (c) Konakahara, T.; Ogawa, R.; Tamura, S.; Kakehi, A.; Sakai, N. Heterocycles 2001, 55, 1737. (d) Hojahmat, M.; Konakahara, T.; Tamura, S. Heterocycles 2000, 53, 629. (e) Konakahara, T.; Hojahmat, M.; Tamura, S. J. Chem. Soc., Perkin Trans. 1 1999, 2803.

(9) Konakahara, T.; Watanabe, A.; Maehara, K.; Nagata, M.; Hojahmat, M. *Heterocycles* **1993**, *35*, 1171.

(10) Sakai, N.; Aoki, Y.; Sasada, T.; Konakahara, T. Org. Lett. 2005, 7, 4705.

(11) Erian, A. W. Chem. Rev. 1993, 93, 1991.

(12) (a) Sakai, N.; Aoki, D.; Hamajima, T.; Konakahara, T. *Tetrahedron Lett.* **2006**, *47*, 1261. (b) Sakai, N.; Hattori, N.; Tomizawa, N.; Abe, N.; Konakahara, T. *Heterocycles* **2005**, *65*, 2799.

⁽¹⁾ For selected reviews, see: (a) Bagley, M. C.; Dale, J. W.; Merritt, E. A.; Xiong, X. *Chem. Rev.* **2005**, *105*, 685. (b) Henry, G. D. *Tetrahedron* **2004**, *60*, 6043. (c) O'Hagan, D. *Nat. Prod. Rep.* **1997**, *14*, 637. (d) Plunkett, A. O. *Nat. Prod. Rep.* **1994**, *11*, 581.

⁽²⁾ For selected books and reviews, see: (a) Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984;
Vol. 2. (b) Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 5. (c) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285. (d) Gilchrist, T. L. J. Chem. Soc., Perkin Trans. 1 2001, 2491.

⁽³⁾ For selected recent references, see: (a) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096. (b) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592. (c) Dediu, O. G.; Yehia, N. A. M.; Oeser, T.; Polborn, K.; Müller, T. J. J. Eur. J. Org. Chem. 2005, 1834. (d) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 3645. (e) Barluenga, J.; Fernandez-Rodriguez, M. A.; Garcia-Garcia, P.; Aguilar, E. J. Am. Chem. Soc. 2008, 130, 2764. (f) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. Org. Lett. 2008, 10, 325. (g) Hu, J.; Zhang, Q.; Yuan, H.; Liu, Q. J. Org. Antipin, M. Y.; Magedov, I. V.; Kornienko, A. J. Org. Chem. 2007, 72, 3443. (1) Dash, J.; Lechel, T.; Reissig, H.-U. Org. Lett. 2007, 9, 5541. (m) Wang, C.; Wang, Z.; Liu, L.; Wang, C.; Liu, G.; Xi, Z. J. Org. Chem. 2006, 71, 8565. (n) Tanaka, R.; Yuza, A.; Watai, Y.; Suzuki, D.; Takayama, Y.; Sato, F.; Urabe, H. *J. Am. Chem. Soc.* **2005**, *127*, 7774. (o) Sainz, Y. F.; Raw, S. A.; Taylor, R. J. K. J. Org. Chem. 2005, 70, 10086. (p) Palacios, F.; Alonso, C.; Rubiales, G.; Villegas, M. Tetrahedron 2005, 61, 2779. (q) Bagley, M. C.; Chapaneri, K.; Dale, J. W.; Xiong, X.; Bower, J. J. Org. Chem. 2005, 70, 1389. (r) Feng, L.; Kumar, D.; Birney, D. M.; Kerwin, S. M. Org. Lett. 2004, 6, 2059. (s) Bagley,
 M. C.; Glover, C.; Merritt, E. A.; Xiong, X. Synlett 2004, 811. (t) Abbiati, G.;
 Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. J. Org. Chem. 2003. 68. 6959.

SCHEME 1. New Approach for a Single-Step Synthesis of Pyridine

TABLE 1. Synthesis of Enamine 1^a

tetrasubstituted pyridines. To our knowledge, this type of preparation of a pyridine core through a one-pot [3 + 2 + 1] coupling process, shown in Scheme 1, has not previously been reported. This paper details the results of this coupling reaction.

On the basis of previous work,¹³ we first prepared a variety of functionalized enamines as starting materials, and the results are summarized in Table 1. For example, the mixture of 3,5-dimethylisoxazole with benzonitrile was initially treated with lithium diisopropylamide (LDA) in THF at -70 °C for 1 h,

(2 equiv) + DMAD 3a	Me ₃ SiX MeCN rt, 10 min rt, 30 min	Ph N
(2 equiv)		4aa
run	Me ₃ SiX (equiv)	yield $(\%)^a$
1	none	7
2	Me ₃ SiCl (2)	98 ^b
3	$Me_3SiCl(1)$	13
4	$Me_3SiI(1)$	trace
5	Me ₃ SiI (2)	17
6	Me ₃ SiOTf (1)	trace
7	Me ₃ SiOTf (2)	8

followed by addition of water to the reaction mixture at room temperature, to produce the desired enamine 1aa in a 90% yield (run 1). The coupling reaction of prepared enamine 1aa, DMF-DEA, and dimethyl acetylene dicarboxylate (DMAD) was then systematically investigated, and the results are outlined in Table 2. When a CH₃CN solution of enamine 1aa, 2 equiv of DMF-DEA 2, and DMAD 3a was stirred at room temperature for 30 min, the tetrasubstituted pyridine 4aa was obtained in only 7% yield (run 1). The structure of pyridine 4aa was determined by spectral data and elemental analysis and was unambiguously confirmed by the X-ray structure analysis of compound 4ab (see Supporting Information).¹⁴ To enhance the yield, the reaction conditions were optimized with several different solvents and a Lewis acidic silicon compound as an additive.¹⁵ As a result, it was found that the desired product 4aa was dramatically improved to a nearly quantitative yield when the reaction mixture, including 2 equiv of trimethylchlorosilane (Me₃SiCl), was vigorously stirred for 10 min before the addition of enamine 1aa (run 2). In contrast, reducing the amount of Me₃SiCl to 1 equiv drastically decreased the yield to 13% (run 3). Moreover, the use of trimethyliodosilane (Me₃SiI) and trimethylsilyl trifluoromethanesulfonate (Me₃SiOTf) instead of Me₃SiCl, even with an increased amount of these silicon catalysts, was ineffective for the improvement of the yield of pyridine 4aa (runs 4-7). Consequently, we decided that the experimental operation using 2 equiv of Me₃SiCl in CH₃CN was the best procedure for the ring-forming reaction (run 2).

We then used this procedure to extend the preparation of polyfunctionalized pyridine derivatives, and the results are summarized in Table 3. The reaction of enamines 1ab-ad, containing not only an electron-donating group but also an electron-withdrawing group on the benzene ring, with acetal 2 and DMAD was conducted in the presence of Me₃SiCl to produce the expected pyridine derivatives 4ab-ad in good to excellent yields (runs 2–4). Similarly, the use of enamine 1ba and 1ca-cd tethered with other substituted groups, such as an amide group or a qunolin-2-yl group, gave the corresponding pyridines 4ba and 4ca-cd in excellent yields

^{(13) (}a) Akiba, K.; Kashiwagi, K.; Ohyama, Y.; Yamamoto, Y.; Ohkata, K. *J. Am. Chem. Soc.* **1985**, *107*, 2721. (b) Konakahara, T.; Takagi, Y. *Heterocycles* **1980**, *14*, 393.

⁽¹⁴⁾ Crystal data for **4ab**: C₂₀H₁₈N₂O₆, MW = 382.36, monoclinic, a = 6.7232(10) Å, b = 24.783(4) Å, c = 10.9025(16) Å, $\beta = 95.596(2)^{\circ}$, U = 1808.0(5) Å³, space group $P2_1/c$, Z = 4, μ (Mo K α) = 0.105 mm⁻¹, 10719 reflections measured, 4068 independent reflections ($R_{int} = 0.0379$), $R_1 = 0.1298$, $wR_2 = 0.3149$. Also see the details in Supporting Information.

⁽¹⁵⁾ Typical solvents, such as THF, CHCl₃, and toluene, and typical Lewis acids, such as InCl₃, ZnBr₂, Cu(OTf)₂, MgBr₂•OEt₂, BF₃•OEt₂, and AlCl₃, were ineffective or only slightly effective for the reaction.

(runs 6–10). Surprisingly, when enamine **1da** having a pyridin-2-yl group was employed, the yield of the product **4da** was moderate (run 11). Also, when diethyl acetylenedicarboxylate (**3b**) was used instead of DMAD, the desired pyridine **5aa** was obtained in a 70% yield (run 12). Unfortunately, an alternative activated alkyne, such as ethyl propiolate, and a less-activated alkyne, such as diphenylacetylene, yielded no product.¹⁶

In conclusion, we have developed a novel Me₃SiCl-promoted three-component coupling reaction of a polyfunctionalized enamine, DMF-DEA, and an internal alkyne having a strong electron-withdrawing group, via a single step. This reaction proceeds cleanly in a short time to produce a variety of tetrasubstituted pyridines in good to excellent yields.

Experimental Section

General Procedure for Synthesis of Enamine 1. To a THF solution (50 mL) of diisopropylamine (2.53 g, 25.0 mmol) was added n-BuLi (27.5 mmol, in hexane) at -70 °C, and the mixture was stirred at the same temperature. After 30 min, 2-methylquinoline (3.58 g, 25.0 mmol) was added dropwise, and the mixture was stirred for 1 h at -70 °C. p-Anisonitrile (3.33 g, 25.0 mmol) was gradually added to the solution, and the reaction mixture was further stirred for 1 h at the same temperature and then for 1 h at room temperature. To quench the reaction, water was added to the mixture. The mixture was extracted several times with AcOEt, and the combined organic extracts were dried over Na₂SO₄, filtered, and then concentrated under reduced pressure. The residue was purified by recrystallization (AcOEt-hexane) to give enamine 2-(quinolin-2-yl)-1-(4-methoxyphenyl)-1-ethenamine 1cb (6.22 g, 90%) as a yellow crystal: mp 156.7-158.0 °C; ¹H NMR (CDCl₃, 500 MHz) δ 3.84 (s, 3H), 5.56 (s, 1H), 6.94 (d, 2H, J = 8.5 Hz), 7.12 (d, 1H, J = 8.0 Hz), 7.33 (t, 1H, J = 8.0 Hz), 7.58 (t, 1H, J= 8.0 Hz), 7.61 (d, 2H, J = 8.5 Hz), 7.64 (d, 1H, J = 8.0 Hz), 7.88 (d, 1H, J = 8.0 Hz), 7.88 (d, 1H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 55.3, 94.7, 114.0, 122.6, 124.0, 125.1, 127.3, 127.4, 127.5, 129.0, 132.0, 134.9, 147.4, 152.4, 159.9, 160.4; MS (FAB) *m*/*z* 276 (M⁺, 100%). Anal. Calcd for C₁₈H₁₆N₂O: C, 78.24; H, 5.84; N, 10.14, Found: C, 78.40; H, 5.76; N, 10.06.

General Procedure for Synthesis of Tetrasubstituted Pyridine 4. To a MeCN solution (0.6 mL) of N,N-dimethylformamide diethyl acetal (2, 88 mg, 0.60 mmol) and dimethyl acetylenedicarboxylate (3, 85 mg, 0.60 mmol) was added freshly distilled trimethylchlorosilane (65 mg, 0.60 mmol) at room temperature under a N₂ atmosphere, and the mixture was stirred at the same temperature. After 10 min, enamine 1 (0.3 mmol) was added to the resulting solution, and the reaction mixture was further stirred for 30 min at room temperature. To quench the reaction, a saturated aqueous solution of NaHCO₃ (5 mL) was added to the mixture. The mixture was extracted several times with CHCl₃; the combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (AcOEt/hexane) to produce pyridine 4 in the yields shown in Table 3. Dimethyl 3-(3'-Methylisoxazol-5'-yl)-2-phenylpyridin-4,5-dicarboxylate (4aa): a pale yellow crystal (AcOEt/hexane); mp 94.8-95.7 °C; ¹H NMR (CDCl₃, 500 MHz) δ 2.26 (s, 3H), 3.86 (s, 3H), 3.98 (s, 3H), 6.00 (s, 1H), 7.33-7.42 (m, 5H), 9.35 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 11.4, 53.0, 53.1, 106.9, 119.8, 120.7, 128.3, 128.8, 129.6, 138.1, 144.2, 151.9, 159.7, 162.3, 164.0, 164.5, 166.2; MS (FAB) m/z 353 (M + H, 100%). Anal. Calcd for C₁₉H₁₆N₂O₅: C, 64.77; H, 4.58; N, 7.95, Found: C, 64.76; H, 4.53; N, 8.12.

⁽¹⁶⁾ Reviewers suggested a reaction route via a hetero Diels–Alder reaction of a 2-aza-1,3-diene that was generated from an enamine and acetal, with DMAD. However, when the reaction of enamine **1a** with acetal **2a** was carried out in the presence of Me₃SiCl, the starting material **1a** was recovered in 99% NMR yield (eq 1).

Additionally, when hetero Diels–Alder reaction between 2-azadiene 6, which was synthesized by the other method, and DMAD in the presence of Me₃SiCl was run, the desired reaction barely proceeded, resulting in recovery (83%) of 2-azadiene 6 (eq 2).

The above results implied the existence of another reaction route for the threecomponent coupling reaction of enamine, acetal, and alkyne.

JOC Note

Acknowledgment. We thank Mr. Fuminori Kobayashi for his experimental assistance. This work was partially supported by Grant-in-Aid for Scientific Research from MEXT (16550148), 2004–2005, a grant from the Japan Private School Promotion Foundation, and a fund for the "High-Tech Research Center" Project for Private Universities: a matching fund subsidy from MEXT, 2000–2004, and 2005–2007. **Supporting Information Available:** Detailed experimental procedures and characterization data for novel compounds, ORTEP diagram of **4ab**, X-ray data for **4ab** in CIF format, and copies of ¹H and ¹³C NMR spectra of novel products were prepared. This material is available free of charge via the Internet at http://pubs.acs.org.

JO801090H